


It does this for positive values of z only (i.e., z-values on the right-hand side of the mean). This table gives a probability that a statistic is less than Z (i.e. The standard normal distribution table provides the probability that a normally distributed random variable Z, with mean equal to 0 and variance equal to 1, is less than or equal to z. Note that for z = 1, 2, 3, one obtains (after multiplying by 2 to account for the interval) the results f( z) = 0.6827, 0.9545, 0.9974, If X is a random variable from a normal distribution with mean μ and standard deviation σ, its Z-score may be calculated from X by subtracting μ and dividing by the standard deviation: Table of Standard Normal Probabilities for Negative Z-scores z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 -3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003.
